APS380 Final Project Report

James Yun, Madeline Zhao, Kamiar Lashgari
University of Toronto
APS380: Intro to Electric Vehicle Design
Prof. Trescases, Prof. Mackay

Dec 3, 2025

1. Introduction & Background
Modern electric and luxury vehicles are increasingly equipped with advanced driver assistance systems
(ADAS) to enhance safety and comfort. However, the development and testing of these systems are costly
due to the need for real-world testing. Our team addressed this challenge by implementing Adaptive
Cruise Control (ACC) and Blind Spot Detection (BSD) within a hardware-in-the-loop (HIL) simulation
platform. The HIL platform allowed for controlled and repeatable testing of the two systems by
interfacing real hardware components (controllers, sensors, actuators) with vehicle and environment
models. To increase test realism while keeping HIL repeatability, select HIL components were migrated
onto a 1:15 scaled physical model environment, including a model vehicle equipped with the ACC and
BSD sensors, as well as movable obstacles.

The system successfully implements ACC speed-regulation logic and BSD proximity-detection logic.
This report outlines the system architecture, hardware and software implementation, testing methodology
and results, and the changes in project scope.

2. Scope
Throughout the development of the Adaptive Cruise Control and Blind Spot Detection HIL Platform,
several significant scope adjustments were made in response to team capacity, technical challenges, and
evolving project priorities. These changes were essential to ensure successful project completion within
the available time and resources.

Closer to the end of the project timeline, one team member withdrew from the course, reducing the team’s
available engineering capacity. This change significantly affected the feasibility of the original plan. The
team initially intended to design a functional 1:15 scale vehicle capable of dynamic interactions with the
environment. Although a CAD design (Appendix B) for the model EV was created, the team encountered
hardware issues with the power delivery for the DC motors. The Arduino-based system was unable to
deliver sufficient power to the DC motors for wheel actuation, so the decision was made to revise the
project's physical design later in the project timeline. The team transitioned to a stationary platform that
contained all the sensors,s and the other road vehicle models were moved relative to the base for system
testing. This redesign eliminated the power-delivery challenges we faced while preserving the ability to
conduct controlled and repeatable ADAS tests.

Originally, the plan was to create a custom motor driver PCB to provide the power delivery and switching
control. However, due to time limitations and manufacturing constraints, fabricating the PCB became
infeasible within the project schedule. As a result, the motor-driver circuitry had to be implemented on a
perfboard.

Alongside the hardware redesign, the project’s ADAS feature set was also adjusted. The original plan
included implementing Lane-Keeping Assist (LKA), which required camera-based lane detection,
consistent lighting, precise lane markings, and closed-loop steering control. Since the transition to a
stationary platform made dynamic lane tracking impractical, LKA was replaced with BSD. BSD is well
suited to a fixed sensor configuration and relies on side-mounted ultrasonic measurements, offering
straightforward testing conditions. This change maintained the project’s objective of implementing two

ADAS subsystems while aligning the scope with the available resources and the updated hardware
capabilities.

3. Functional Objectives

The project was guided by a set of functional objectives intended to ensure that the final system achieved
meaningful ADAS functionality while remaining feasible within resource and time limitations.

System Integration

e The module and HIL platform must execute with consistent latency - below 100 ms.
ACC Requirements

e Following distance is maintained within 10% of the target.

e The system must function correctly across speeds 0-140 km/h
BSD Requirements

e The BSD system must detect obstacles within 100 ms.

Primary Functions
- Measure distances to objects ahead
- Calculate required speed adjustments based on the current following distance and user-set
parameters
- Generate motor control commands for speed increase, decrease, or maintenance
- Process user inputs for cruise speed and following distance settings
- Display system status, including current mode, detected distances, and active commands

Secondary Functions
- Filter sensor noise through digital signal processing algorithms
- Validate sensor readings for range and consistency checks
- Log operational data for performance analysis and debugging
- Communicate with external systems via standardized protocols
- Provide emergency override capability for immediate system shutdown
- Execute self-diagnostics on startup and during operation

Table 1. Objectives

Objective Metric Goal

Responsive End-to-end latency from sensor detection to motor command | < 100ms

Accurate Following distance error from the setpoint Within 10% of the
target distance

Safe Emergency stop response time when an obstacle is detected < [< 500ms
Im

Portable Combined weight of all system components <2kg

4. System Design
System Architecture
The implemented ACC system follows a simple control loop architecture shown in Figure 1. The Arduino
continuously reads the distance data from the front ultrasonic sensor, executes the motor control
algorithm. Three pushbuttons were also added to allow real time adjustment of system parameters and
emergency override.

& INPUTS

ot sianals
L-BSM R-BSM FRONT —/—Input sonas—__
ULTRASONIC ULTRASONIC ULTRASONIC S e —

Arduino UNO
Breadboard Motor Drive
Circuit
power/ground

++BUTTON -~ BUTTON E_STOP
BUTTON

Figure 1. System Block Diagram

The system operates in three different states of a finite state machine, as depicted in Figure 2. The
RUNNING state executes normal ACC functionality.

(sTART)

System Reset /
E-Stop Released

IDLE

- Maintain cruise
speed

- No vehicle
detected

Too
Vehicle gone close

(dist > MAX_DSTANCE) (dist <

MIN

DISTANCE)

FOLLOWING

- Use PID to

maintain distance
- Adjust speed
dynamically

Button
released

EMERGENCY-
STOP

Figure 2. State Machine Diagram

Hardware Design and Component Justifications

The Arduino UNO R3 replaced the initially proposed RPi due to the benefit of the ability to run the
control algorithm without operating system overhead. PWM generation and interrupt handling were
directly accessible, and the Arduino’s simplified programming framework and native USB serial
communication enabled ease of debugging and power to the setup.

The Adafruit VL53L0X ToF sensor was also replaced with a SR04 ultrasonic sensor for its higher
reliability and consistency in the distance measurement readings.

The physical user interface consists of three distinct pushbuttons and three LEDs. The emergency stop
button connects to a digital pin with interrupt capabilities to ensure immediate response regardless of
FSM state. Target distance adjustments button used a simple debounce logic to detect user presses. All
buttons use the internal pull-up resistor, eliminating the need for external resistors in the system.

Table 2. Pin Assignments

Pin Function Hardware Component
2 Emergency Stop Pushbutton

3 Target Distance Increment Pushbutton

4 Target Distance Decrement Pushbutton

5 BSM Trig (Left) Ultrasonic Sensor
6 BSM Echo (Left) Ultrasonic Sensor
7 BSM Trig (Right) Ultrasonic Sensor
8 BSM Echo (Right) Ultrasonic Sensor
9 Motor Command PWM DC Motor

11 E-Stop LED LED

12 BSM LED (Left) LED

13 BSM LED (Right) LED

A0 Front Trig Ultrasonic Sensor
Al Front Echo Ultrasonic Sensor

The decision to design the motor driver was made to add complexity to the hardware components. See
Appendix C for the schematic and proposed PCB layout.

Software Design

The software architecture was developed with a high focus on modularity and state-based design to
separate sensor data acquisition, control logic, and UI handling for ease of implementation and
debugging. The main loop executes a fixed sequence of operations, ordered to prioritize safety checks
followed by button handling, sensor data, and motor command.

The control algorithm implements proportional speed adjustment based on measured distance to the car
ahead. The algorithm uses four discrete zones mapped to specific regions of motor operation to simulate a
moving vehicle. Please refer to Appendix D for how the motor command is calculated.

5. Testing and Results
testing was essential to ensure that both the software and hardware components of the ACC and BSD
platform operated reliably before being integrated into the full HIL system. The following subsections
describe the specific testing approaches used for both software and hardware components of the system.

Software Testing

The software was tested using a bottom-up integration approach, validating each software component
before integrating into the complete ACC system. Each module was tested independently using a separate
test program with serial communication to monitor output for real time debugging and observation,
allowing for ease of isolating defects to specific subsystems before complete integration into the main
algorithm. Please refer to Appendix D for more information

Hardware Testing

To test the motor driver, a signal generator was used to produce square waves at S00Hz with various duty
cycles. The motor was observed to identify a change in RPM while measurements at the positive and
negative legs of the motor were taken to ensure proper amplification of a control PWM signal, as shown
in Figure 4 below.

H sooms SABme

TRy AR

Figure 4. Motor Driver Behaviors Measured on an Oscilloscope

Performance Results
The end product can be seen in Figure 5. The Arduino, breadboard, motor driver, and motor were
mounted on a wooden block, with the wheel facing upward for visibility.

Figure 5. Assembled System Being Tested

The system performed as expected. As the distance between the ACC vehicle and a leading vehicle
decreased, so did the speed of the wheel. Additionally, a vehicle passing on either side of the system
would trigger the blind spot detection LEDs.

Hardware Challenges
Due to timing and manufacturing constraints, the PCB for the motor driver had to be abandoned. The
design was implemented on the perfboard shown in Figure 6.

00
9000

O
o)

00
00
00
o)

@®0C
A0 000

This added significant difficulty to assembling the board, since all the connections had to be created with
wires by hand.

6. Conclusion
This project successfully developed a hybrid HIL platform capable of testing Adaptive Cruise Control and
Blind Spot Detection systems using embedded hardware. Despite challenges and scope adjustments, the
final system met its functional objectives and provided a foundation for future expansion into more
advanced ADAS features.

Appendices
Appendix A: BOM

Appendix B: SolidWorks Design

Figure 7: CAD design of the model EV

Appendix C: Motor Drive Schematic and PCB

1 | 2 ‘ 3 4
Vee
Note: q1_pwm and q2_pwm should have separate arduino pins
and should never be on together. q2_pw is for reversing
A R1b R3b
10K 10K
Rest Resl
| - @B
TIP32A
Rla | waqi \y 1 R
680 LS 680
] Resl o o Resl o
[PIN222AG
1 pum RS 2 Qs 2 KT 2 pwm
i a— :'—"’m TR
Resl ol ol Resl
1
| c1) N |
1 Vee == =
Cql GND GND
&1z 10UF =
Tep Gip
B =
3 — fnotor_in fnotor_out
%ﬂ
4 gl pum —
?' GND
S5 @ owm Vee Vee
s
S5
&7 motor in ==
— GND R6b RSb
&1 8 motor out 10K 10K
Resl Resl
RST08.G
| - @
P2N2222AG
2 pum RS 5 706 2 1 pum
- — T H & SGOVM_L
® Resl ol ol Resl
“ | me31c
Ra 1P 1 Ria
] 630 e 680 !
R2 Rest ol o Resl b
10K 10K
Resl (i | Resl
= Gip =
1 GND GND
D Title
APS380 Gate and Motor Driver
Size Number Revision
In 1
Date: 1171472025 [Sheet _of
File: C:Users\..\h_bridge. SchDoc [Drawn By: Madeline Zhao
1 | 2 3 4

Figure 8. Motor Driver Schematic

oo | [Aeccecsse] {moo

Rib Q1 Ria 1 Conne

Rib @1 Ria

66

R2b @2 R2a @ R4a @4 R4b

Figure 9: Proposed PCB Layout

Appendix D: Arduino Code Algorithms

void calculateMotorCommand() {
int distance = (int)filteredDistance;

if (distance >= MAX_DETECTION_DIST) {
motorCommand = CRUISE_SPEED;
}

else if (distance <= DANGER_DISTANCE) {
motorCommand = MOTOR_OFF;
¥

else if (distance >= targetDistance) {
motorCommand = CRUISE_SPEED;
}

else {

motorCommand = map(distance, DANGER_DISTANCE, targetDistance, MIN_SPEED, CRUISE_SPEED);

}

if (motorCommand != MOTOR_OFF) {
motorCommand = constrain(motorCommand, MIN_SPEED, CRUISE_SPEED);
¥

Figure 10: Calculating motor command PWM

10

i loop() {
if (millis() - lastSample >= ¢
lastSample = millis();

leftDistance = measureDistance(LEF
rightDistance = measureDistance(RIGH

leftDetected = (leftDistance > @) && (leftDistance <= DETECTION_T

rightDetected = (rightDistance > @) & (rightDistance <= DETE

digitalWrite(LE LED, leftDetected ? HIGH : LOW);
digitalWrite(RIGH), rightDetected ? HIGH : LOW);

printResults();

) measureDistance{uint8 t trigPin, echoPin) {
digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(1@);

digitalWrite(trigPin, LOW);

duration = pulseIn(echoPin, HIGH, 30000);

f (duration
return -1;

g distance_mm = (duration * 343L) / 2000L;

return distance_mm;

bid printResults() {

Serial.print(F("Lef

f (leftDistance > @
Serial.print(leftDistance);
Serial.print(F(" mm "});
Serial.print(leftDetected ? F("[DETECTED]")

} else A

Serial.print(F("

Serial.print(F(" | Right:

f (rightDistance > @) {

Serial.print(rightDistance);

Serial.print(F(" mm "));

Serial.print(rightDetected ? F("[DETECTED]") : F("I[
} else

Serial.print(F("

Serial.println();

Figure 11: Modular testing protocol

pinMode (EMERGENCY_STOP_PIN, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(EMERGENC
emergencyStopISR, FALLING);

void loop() {
if (emergencyStopPressed) {
Serial.println("EMERGENCY STOP AC

delay(50);
while (digitalRead(EMERGENCY
delay(10);

Serial.println("Emergency stop rele
emergencyStopPressed =

delay(500);

handleUserButtons() {
gned long now = millis();

incState = digitalRead (TARGET_IN
if (incState != lastIncBtnState) {
if (incState == LOW & (now - lastIncBtnTime) >= BUTTON
incrementTargetDistance();
lastIncBtnTime = now;

lastIncBtnState = incState;

decState = digitalRead(TARG DECREMENT_BTN) ;
decState != lastDecBtnState) {

if (decState == LOW && (now - lastDecBtnTime) >= Bl
decrementTargetDistance();
lastDecBtnTime = now;

lastDecBtnState = decState;

setup() {
Serial.begin(115200);
Serial.println(“starting pushbutto

pinMode (TARGE
pinMode (TARGE

BTN, INPUT_PULLUP);
BTN, INPUT_PULLUP);

Serial.print("Initial target distance: ");
Serial.print(targetDistance);
Serial.println(" mm");

i loop() {
handleUserButtons();

unsigned long lastPrint = 0;
if (millis() - lastPrint >= 1000
lastPrint = millis();
Serial.print("Current target
Serial.print(targetDistance);
Serial.println(" mm");

reset here."

	APS380 Final Project Report
	1.​Introduction & Background
	2.​Scope
	3.​Functional Objectives
	4.​System Design
	System Architecture
	Hardware Design and Component Justifications
	
	Software Design
	Software Testing
	Hardware Testing
	
	Performance Results
	Hardware Challenges

	6.​Conclusion
	
	Appendices
	Appendix A: BOM
	Appendix B: SolidWorks Design
	Appendix C: Motor Drive Schematic and PCB
	Appendix D: Arduino Code Algorithms

